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Humans and animals form cognitive maps that allow them to navigate through large-scale 
environments. Here we address a central unresolved question about these maps: whether 
they exhibit similar characteristics across all environments, or—alternatively—whether 
different environments yield different types of maps. To investigate this question, we 
examined spatial learning in three virtual environments: an open courtyard with patios 
connected by paths (open maze), a set of rooms connected by corridors (closed maze), 
and a set of isolated rooms connected only by teleporters (teleport maze). All three 
environments shared the same underlying topological graph structure. Post-learning tests 
showed that participants formed representations of the three environments that varied in 
accuracy, format, and individual variability. The open maze was most accurately 
remembered, followed by the closed maze, and then the teleport maze. In the open maze, 
most participants developed representations that reflected the Euclidean structure of the 
space, whereas in the teleport maze, most participants constructed representations that 
aligned more closely with a mental model of an interconnected graph. In the closed maze, 
substantial individual variability emerged, with some participants forming Euclidean 
representations and others forming graph-like representations. These results indicate that 
an environment’s features shape the quality and nature of the spatial representations 
formed within it, determining whether spatial knowledge take a Euclidean or graph-like 
format. Consequently, experimental findings obtained in any single environment may not 
generalize to others with different features.  
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Public Significance statement 
This study shows that people form different types of mental maps of different types of spaces. If 
the space being learned is open, people are likely to form a mental map that has information 
about the straight-line distances and directions between different locations. In contrast, if the 
space has limited visibility between its parts (e.g. a maze), people are likely to form a mental map 
that has information about the routes that connect different places (“cognitive graph”), and less 
about their exact locations. These findings illuminate how people create mental representations 
of different physical spaces, and may have implications about how they learn abstract spaces. 

 

 

Introduction 
How does the mind represent large-scale, navigable spaces? Decades of research 

focusing on this question have led to intense debate about the nature of spatial knowledge. 
Classical theories propose that humans and animals form cognitive maps by encoding spatial 
locations in Euclidean  coordinates, akin to how they are represented on actual physical maps 
(Gallistel, 1990; O’Keefe & Nadel, 1978).  This Euclidean code allows for the computation of direct 
vectors between locations and the use of novel shortcuts. However, an alternative hypothesis 
suggests that spatial knowledge takes a more graph-like format in which a subset of locations are 
encoded in terms of the connections (routes) between them, without the use of a global coordinate 
system (Kuipers, 1982; Warren, 2019).  This unresolved debate holds significance not only for 
spatial navigation but also for cognition in other domains. Spatialized structures such as cognitive 
maps and cognitive graphs have been proposed to underlie many types of knowledge, including-
-for example---personality traits (which lend themselves to representation in a multidimensional 
Euclidean space) and social networks (which lend themselves to representation in a graph-like 
form). Thus, understanding the circumstances under which these spatialized knowledge 
structures are formed and used is an endeavor of broad importance to psychology. 

Here we examine a crucial factor that is often ignored when considering the format of 
spatial knowledge: the structure of the space being represented. This structure varies across 
environments: some spaces are more open and others more closed, some have more distal 
landmarks and others fewer, some have easy to follow connections between subspaces and 
others have connections that are harder to follow. Most studies employ a single type of 
environment (e.g. open arena or closed-in maze), and different environmental types are rarely 
compared within the same study. Although the assumption is often made that findings obtained 
in one environment should generalize to all, this assumption has not been tested, and there are 
several reasons to believe that people may in fact form different kinds of mental representations 
in different kinds of environments. 

One line of evidence comes from electrophysiological studies in rodents. When animals 
navigate in open arenas, hippocampal place cells typically fire in consistent locations irrespective 
of the direction from which these locations are accessed, indicating a direction-invariant place 
code (Moser et al., 2008; O’Keefe & Dostrovsky, 1971). In contrast, when animals navigate in 
linear corridors, place cell firing is modulated by the direction of movement, indicating a direction-
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dependent representation (McNaughton et al., 1983; Mehta et al., 1997; Muller et al., 1994). 
Another line of evidence comes from behavioral studies in humans. People navigating in large 
open environments exhibit behaviors and neural patterns that are consistent with the use of 
Euclidean cognitive maps (Chadwick et al., 2015; Doeller et al., 2010; Jacobs et al., 2013; 
Maidenbaum et al., 2018; Shine et al., 2019), whereas people navigating in maze-like 
environments exhibit behaviors and neural patterns that are consistent with the use of non-
Euclidean spatial representations (Chrastil & Warren, 2014; Doner et al., 2022; Ericson & Warren, 
2020; He & Brown, 2019; Moeser, 1988; Muryy & Glennerster, 2018; Zetzsche et al., 2009). Taken 
as a whole, these literatures suggest that the structure of the environment may matter: whereas 
some environments might be more easily encoded using a Euclidean reference frame, others 
might be more easily encoded using a cognitive graph consisting of place nodes and their 
connections (Peer et al., 2021). 

If people do tend to form different representations in different environments, this tendency 
might interact in interesting ways with individual differences in navigational ability. Previous work 
has shown that people differ in their capacity to form spatial representations of large-scale spaces 
(Ishikawa & Montello, 2006; Weisberg & Newcombe, 2018). For example, one study found that 
people learning a virtual environment could be separated into three groups: integrators, who could 
accurately point to locations in separately-learned parts of the environment; non-integrators, who 
could only point to locations in the same part of the environment but not across parts; and 
imprecise navigators, who could not point accurately to any location (Weisberg et al., 2014). 
However, these groupings were obtained in a single environment with specific features – a large 
open space without direct visibility across all its parts, traversed by bounded routes. It is unclear 
how these groupings would generalize to other types of environments, such as open spaces with 
full co-visiblity or closed environments with constrained routes (e.g. a building with rooms 
connected by corridors). One possibility is that individual differences might manifest differently 
across environments with different features. Alternatively, these individual groupings might be 
stable character traits, perhaps shaped by the environment that the participants grew up in 
(Barhorst-Cates et al., 2021; Coutrot et al., 2022). 

We set out to investigate these ideas by examining how large-scale spatial knowledge 
differs across newly learned environments with different spatial structure. Participants were 
randomly assigned to learn one of three virtual environments (Figure 1). The three environments 
were the same in terms of their graph structure: they all contained nine subspaces that were 
connected in the same way. Crucially, however, the environments differed in terms of the cues 
available for determining location and heading in Euclidean space. In the first environment (“open 
maze”), the subspaces were unwalled patios connected by walkways, contained within a 
courtyard with distal landmarks. In the second environment (“closed maze”), the subspaces were 
enclosed rooms connected by corridors. In the third environment (“teleport maze”), the subspaces 
were enclosed rooms that were connected by “teleporters” located at the room centers. The first 
two environments were intended to mimic real-life settings that may be represented differently by 
individuals—the open maze resembled a city park, while the closed maze resembled the interior 
of a building—whereas the third environment was designed to probe an artificial situation in which 
participants’ knowledge of the global organization of the environment was limited to the 
connectivity structure between the subspaces. Following learning, participants performed a series 
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of behavioral tests designed to explore the structure of their spatial representations (Figure S1). 
We hypothesized that the difference between the environments would affect both the quality and 
the format of the resultant spatial codes. To anticipate, we found that the environmental structure 
affected participants’ ability to learn the environment, the format of their mental representation 
(Euclidean space or cognitive graph), and how these representations varied between participants.  

 

 
Figure 1: Virtual environments and procedure. A) All three environments contained nine connected 
subspaces (patios or rooms), each with a unique floor color and object contained within a treasure chest. 
In the open-maze condition (left), there were no walls and the entire environment and its surrounding distal 
landmarks were visible, similarly to a real-life city park. In the closed-maze condition (center), the rooms 
and connecting pathways were surrounded by walls so that only the immediate surroundings were visible, 
and participants had to maintain an internal sense of direction and location to navigate, similarly to a real-
life building interior. In the teleport maze condition (right), rooms were physically isolated from each other, 
and participants relied on a system of teleporters to transition between rooms; therefore, they could not 
maintain a consistent sense of direction and could only learn the connectivity structure of the environment. 
Each environment is depicted from two viewpoints: Room view, which shows a part of the environment from 
first person point of view, and Path view, which shows a part of the environment from the pathway, corridor 
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or teleport. Schematic shows that the connectivity structure is the same for all three environments.  B) The 
sequence of the experiment. Participants were administered the Santa Barbara Sense of Direction 
(SBSOD) and Perspective Taking for Adults (PTT-A) task and were then trained on one of the three 
environments. Following environmental learning, their spatial knowledge of the environment was tested 
using a battery of spatial memory tasks. All participants performed all tasks consecutively, except that the 
Judgment of Relative Direction (JRD) task was omitted for participants in the teleport maze. 

 

 

Methods 
 

Participants 

Sixty healthy individuals were recruited for the study and randomly assigned in equal 
numbers to three experimental conditions (open maze, closed maze, or teleport maze; 20 
participants each). The number of participants was chosen based on power analyses of previous 
studies that examined spatial localization and pointing accuracy across environments (Barhorst-
Cates et al., 2021; Marchette et al., 2017; Mou & Wang, 2015), which indicated that 18-20 
participants are needed for effect sizes of 0.67-0.96. Data from 5 participants were excluded 
before analysis: 3 because they failed to complete the spatial learning task in the allotted time, 1 
because they failed to complete the spatial learning task due to nausea, and 1 because their data 
were lost due a technical error. Five individuals were recruited to replace these participants and 
assigned to the corresponding conditions. Participants were asked to provide their sex and age: 
of the 60 participants whose data are reported, 39 identified as female, 21 identified as male, and 
1 did not disclose their sex. Mean age was 24 (standard deviation 8.4). Sex and age did not 
significantly differ between the three groups (proportion female – 0.75, 0.7, 0.53, mean age – 
22.3, 26.7, 23.7, for the open, closed and teleport maze respectively; one-way ANOVA, 
F(57)=1.18,1.47, p=0.32,0.24, for sex and age respectively). All participants provided written 
informed consent in compliance with procedures approved by the University of Pennsylvania 
Institutional Review Board. One of the included participants did not have data for the JRD and 
post-experiment questionnaire due to a technical error, and one did not have data for the PTTA 
task.  

 

Virtual environments 

To test how the structure of a spatial environment affects how the environment is 
represented, we used Unity 3D software to create three virtual environments (open maze, closed 
maze and teleport maze). These environments all had the same topological graph structure, but 
they differed in other features, as described below. Each environment contained nine square 
(20x20 virtual meter) subspaces (patios or rooms). The subspaces were connected to each other, 
such that direct travel was possible between each subspace and two or three other subspaces. 
The nature of these connections differed between environments, as described below, but they 
always involved the same pairs of subspaces so that the connectivity structure was the same 
across all three environments (Figure 1A). Each subspace had a unique floor color (black, white, 
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red, pink, yellow, orange, green, blue, or purple), and contained a treasure chest mounted on a 
pedestal, with an object inside it (ruby, globe, flashlight, book, key, burger, sword, rose, or bottle). 
Floor colors and objects were randomly assigned to the different rooms for each participant. All 
objects and environmental elements were purchased from Unity Asset Store. 

In the open maze, the subspaces were brick patios without walls. They were laid out on a 
grassy lawn and were connected by stone pathways (also without walls). Travel was restricted to 
these pathways. Due to the absence of walls, open visibility was maintained across the entire 
environment. The lawn was bounded by a low fence that marked off a rectangular area of 130 x 
100 virtual meters. Distal landmarks were located beyond the four sides of the rectangle: a rocky 
mountain range, a storefront, a Ferris wheel and a forest (Figure 1A). The open maze features 
were selected to mimic real-life open environments, such as city parks, that are open but have 
visible boundaries and distal landmarks. 

In the closed maze, the subspaces were enclosed rooms with bounding walls but no 
ceiling. They were connected by passageways that also had bounding walls and were open to 
the sky. There were doors between the rooms and the pathways, so that visibility was always 
limited to the current room or pathway. There were no distal landmarks (Figure 1B). The closed 
maze features aimed to resemble real-life closed environments such as building interiors or cities 
with tall buildings, where visibility between parts of the environment is limited and most of the 
information available to navigators is the routes between environmental parts. 

In the teleport maze, the subspaces were the same rooms as in the closed maze. 
However, in this case, the rooms had no visible exits. They were connected instead via a system 
of “teleporters” that were engaged when the participants navigated to an upright 3 virtual meter 
tall white capsule in the center of each room. Upon reaching the capsule, the names of two or 
three adjacent rooms, along with corresponding color patches, would appear on the screen. A 
key press of “1”, “2”, or “3” initiated “teleportation” to the chosen room. During teleportation, a 
black starry space image appeared on the screen for 2.5 seconds, after which participants landed 
in a random corner of the target room, facing the center of the room. Thus, teleportation moved 
participants at a fixed speed from one room to another without allowing them to maintain a 
consistent sense of direction. The connections between rooms through the teleporters were 
exactly the same inter-room connections as in the open and closed maze environments. As in the 
closed maze environment, there were no distal landmarks (Figure 1C). The teleport maze did not 
resemble real-world environments but was instead aimed to study whether people can navigate 
and form accurate representations based on connectivity structure alone when they are unable 
to continuously track their global heading or location. 

 

Experimental Procedures 

Overview 

At the beginning of the experiment, participants completed the Santa Barbara Sense of 
Direction (SBSOD) scale and the Perspective Taking Task for Adults (PTT-A) to test their baseline 
spatial abilities. Participants assigned to the teleport maze condition then completed a brief 
slideshow tutorial explaining how the teleporter system operated. All participants then completed 
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the environmental learning task, which was intended to teach them about the spatial arrangement 
of the environment and the location of the objects within it. The knowledge that they obtained was 
then assessed by a series of spatial memory tasks: Euclidean distance estimation, shortest path 
selection, path distance estimation, free recall, map localization, and Judgment of Relative 
Direction (JRD). Finally, participants filled out a post experiment questionnaire (see Figure S1).  

The experiment was performed in a single behavioral session, which was administered 
virtually while being monitored by the experimenter through Zoom video conferencing software. 
Each participant downloaded the experimental software to their personal computer, on which the 
experiment was administered while remotely sharing the view of the screen with the experimenter. 
Experimental data was continuously transmitted to the experimenter during the session. The 
session lasted between 1.5-2 hours (mean = 79.6 minutes, SD = 23.2 minutes). Below we 
describe each experimental task in detail. All tasks were programmed using Unity 3D software 
and were self-paced. 

 

Santa Barbara Sense of Direction (SBSOD) 

Participants completed the Santa Barbara Sense of Direction (SBSOD) scale, a 15 
question self-assessment of their navigational ability (Hegarty, 2002). On each trial, a phrase 
related to spatial ability appeared on the screen, and participants asked to rank how much this 
phrase describes them on a scale of 1 to 7. 

 

Perspective Taking Task for Adults (PTT-A) 

Participants completed the Perspective Taking Task for Adults (PTT-A), which is designed 
to evaluate the ability to take a spatial perspective other than one’s own (Frick et al., 2014). On 
each trial, participants viewed an image of a toy person taking a picture of 3 colored geometric 
shapes, and were instructed to select one out of eight photos that accurately displays the view 
from the photographer’s perspective. Before the task, participants viewed a brief tutorial slideshow 
to become familiar with the task. Participants were instructed to complete as many trials as 
possible within 3 minutes. 

 

Environmental learning task 

The environmental learning task was intended to teach participants the structure of the 
environment and items' locations in it. During this task, participants freely navigated the virtual 
environment using the computer keyboard, while viewing it from a first-person, ground-level 
perspective. The task was divided into six stages. Stages 1-3 focused on learning the room 
locations; stages 4-6 focused on learning the object locations.  

In each stage, participants were required to navigate to 9 navigational goals (rooms or 
objects) in a random sequence. Each stage began with short instructions, after which the name 
and image of the first navigational goal (room or object) was shown at the top of the screen. 
Participants were required to navigate to the goal and press the spacebar key when they arrived 
at its location (inside the goal room, or next to the treasure chest containing the goal object). If 
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they pressed the button at the correct goal location, the next navigational goal was displayed. If 
they pressed the button at an incorrect location, an error message was displayed, and they had 
to continue searching until they reached the correct location, at which point they moved on to the 
next trial. After all nine rooms or objects were found, participants were cued to search again for 
any items they made errors on, and they only moved on to the next stage after they found all nine 
goals in errorless trials. A counter at the top of the screen indicated how many rooms or objects 
had been found successfully during the current stage. Participants were randomly placed in the 
center of one of nine rooms at the start of stage 1, and started each subsequent stage from the 
ending position of the previous stage. 

In stages 1-3, participants searched for the rooms denoted by their floor colors. In stage 
1, each room’s floor color was made visible as soon as the participant was within the room 
boundaries. This meant that they could always see the floor color of the room they were in, but 
could not see the floor colors of distant rooms in the open maze, even though the rooms 
themselves were visible. In stage 2, each room’s floor color was only visible once the participants 
indicated that they were at the goal room, forcing participants to use their memory for the floor 
colors. Stage 3 was similar to stage 2, but all rooms had to be found in errorless sequence in 
order to finish the task. If an error was made, the stage started over at the beginning, with a new 
random sequence of trials. Throughout stages 1-3, each treasure chest was opened as soon as 
participants entered its corresponding room, making the objects visible (even though they were 
not yet relevant to the task).  

In stages 4-6, participants searched for the objects. In stage 4, the treasure chest in each 
room opened as soon at the participant entered the room, revealing the object within. In stage 5, 
objects remained hidden inside the treasure chests until participants approached one of the 
chests and indicated that it was the goal location, at which point the chest opened. Stage 6 was 
similar to stage 5, but participants were required to find all objects in an errorless sequence, and 
had to repeat the whole stage from the beginning if they made a mistake. Throughout stages 4-
6, floor colors were made visible as soon as participants entered each room. 

The learning task was limited to 65 minutes; participants who exceeded this limit were not 
tested further. The gradual learning, repetition of incorrectly remembered rooms and objects at 
the end of each stage, and requirement for perfect color/object finding in stages 3 and 6 ensured 
that participants who completed the learning task accurately encoded all of the room and object 
locations. 

 

Euclidean distance estimation task 

This task tested participants’ knowledge of direct-line (Euclidean) environmental 
distances. On each trial, the names of two objects were presented: one on the left and one on the 
right side of the screen. Participants then typed in their estimate of the direct-line (Euclidean) 
distance between the two objects, in feet. All possible pairs of objects were used, resulting in 36 
trials.  
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Shortest path selection task 

This task tested participants’ knowledge of the connectivity structure between rooms. On 
each trial they saw the name of a starting room (indicated by floor color) and the name of a target 
object. Below these on the screen, they saw the names and color patches corresponding to the 
rooms (two or three) that were connected to the starting room, ordered from left to right in a 
random order. Their instructions were to choose the connecting room that would take them from 
the starting room to the target object using the shortest possible path. All possible room-object 
combinations were queried, with the exception of combinations for which target objects were in 
rooms adjacent to the starting room and combinations for which there was no correct answer 
because all selections had a similar shortest path distance. With these exclusions, there were 36 
trials. Participants were queried on the first step of the route instead of the whole route to keep 
the experiment within a reasonable length of time. 

 

Path distance estimation task 

This task tested participants’ knowledge of the lengths of the routes connecting different 
parts of the environment. On each trial, they viewed the names of two objects, presented on the 
left and right side of the screen. They were instructed to type their estimate of the time (in seconds) 
it would take them to travel between the two objects, which is a measure of path distance since 
travel in the environment was at a fixed speed. All possible pairs of objects were used, resulting 
in 36 trials. 

 

Free recall task 

This task tested whether participants’ recall order was shaped by the rooms’ connectivity 
or distance (Miller et al., 2013). Participants were asked to type the names of the objects in the 
maze in any order, pressing the “return” button after each name to move on to the next line. They 
then pressed the “finish” button when they had recalled as many objects as possible. Entered 
object names remained visible along with a counter indicating the number of entered objects. 

 

Map localization task 

This task measured participants’ explicit knowledge of the locations of each room and 
object. On each trial, they were presented with the name and picture of an object on the screen, 
or the name and picture of a floor color corresponding to one of the rooms, along with an empty 
rectangle proportional to the environment size. They were instructed to click the cursor within the 
rectangle to indicate the location of the indicated item, at which point a red dot appeared in the 
clicked location; participants could click again to reselect the location as many times as they 
wanted before finalizing their answer by clicking a “continue” button. Items remained visible on 
the screen in their selected location in the following trials, allowing participants to place 
subsequent items relative to previously selected locations (and not just relative to the overall 
environmental boundary). Each room and object (18 total) was queried, in random order.  
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Judgment of Relative Direction (JRD) task 

This task tested participants’ knowledge of the directional relationships between parts of 
the environment. On each trial, they saw the names of two floor colors (corresponding to two 
rooms) and one object. They were instructed to imagine that they were standing in the first room 
(starting room), looking toward the second room (facing room). They were then asked to indicate 
the direction of the object (target object) by rotating an arrow on the screen from 0 to 360 degrees. 
Each possible starting-facing room combination was queried, for a total of 72 trials. Target objects 
were never in the starting or facing rooms, and each target object was used an equal number of 
times. Only participants in the open and closed maze environments completed the JRD task. 

 

Quantification and Statistical Analysis 

Santa Barbara Sense of Direction (SBSOD) 

Each participant’s self-rated navigational ability was measured by averaging across all 
SBSOD questions (taking into account questions that are reverse scored). The resulting SBSOD 
scores did not significantly differ between the open maze, closed maze and teleport maze 
participant groups (F(57)=0.26, p=0.77, one-way ANOVA). Scores across participants were then 
correlated to individual performance in each spatial memory task. 

 

Perspective Taking Task for Adults (PTT-A) 

Each participant’s perspective taking ability was measured by scoring the number of PTT-
A trials answered correctly within the time limit, out of a maximum of 32. PTT-A scores did not 
significantly differ between the open maze, closed maze and teleport maze participant groups 
(F(57)=2.66, p=0.08, one-way ANOVA). Scores across participants were then correlated to 
performance in each spatial memory task. 

 

Environmental learning task 

To verify that participants learned the environmental structure and used it to navigate 
(instead of walking randomly until encountering the target room/object), we calculated a measure 
of navigational efficiency for each participant in the following manner. First we calculated, for each 
trial, the length of the path that the participant took from the starting location (i.e. the location of 
the room/object that was the goal on the previous trial) to the goal location. In the open and closed 
mazes, the physical path length between the room centers was used (i.e. virtual meters); for the 
teleport maze condition, the path length was the number of rooms through which the participant 
passed (since all inter-room transitions were of similar length in this condition), and 1 was 
subtracted from this number (since the floor color of the target room, or the room containing the 
target object, was always visible upon reaching the teleporter in the room preceding the target). 
Then, for each trial, chance level performance was calculated by generating 1000 random walks 
between the starting and goal location and averaging the path lengths of these random walks. 
The true path length was then divided by the average chance path length to obtain a path 
efficiency ratio. These ratios were compared to 1 (the null hypothesis of no difference between 
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chance and actual performance) using a one-sample one-tailed t-test across participants in each 
condition, with FDR (False Discovery Rate) correction across conditions. Stages 1 and 4 were 
not included in this calculation because paths in these stages were implemented prior to learning 
room and object locations.  

To test for possible use of cognitive graph knowledge during participants’ route decisions, 
we examined trials for which there were two pathways of equal length but different number of 
intervening rooms between the starting and target locations. By examining these trials, we aimed 
to determine whether participants relied on cognitive graph knowledge (room connectivity 
structure) rather than solely relying on absolute Euclidean locations and distances. In these trials, 
a preference for the route with fewer intervening rooms would indicate navigation guided by room 
connectivity, while an equal chance of selecting each route would suggest reliance solely on 
Euclidean knowledge. We calculated the proportion of these trials on which participants chose 
the route with the lower compared to the higher number of intervening rooms. This value was 
compared to the null hypothesis of no route preference (0.5) using a one-sample two-tailed t-test 
in each environmental condition, with FDR-correction across conditions. These values were 
computed for the open and closed maze conditions. They were not calculated in the teleport 
maze, because path length and number of intervening rooms were identical quantities in this 
condition. 

 

Euclidean distance estimation task 

To assess participants’ knowledge of absolute distance between locations, task accuracy 
was quantified by calculating the correlation between the estimated distance and the veridical 
Euclidean distance across trials. The use of correlation provided a scale-invariant measure, 
mitigating biases from participants who may have consistently overestimated or underestimated 
distances in feet in the virtual environment. Accuracy was compared to chance for each 
environment by using a one-sample one-tailed t-test against a zero baseline, FDR-corrected 
across the three environments. Differences between conditions were tested using a one-way 
ANOVA with Tukey-Kramer post-hoc tests.  

To test if participants’ distance estimations were affected by cognitive graph knowledge 
(instead of solely corresponding to the true Euclidean distances), for each participant, we 
calculated the correlation between the estimated distances across trials and the shortest path 
length between rooms. We compared this value to the correlation between estimated distances 
and Euclidean distances (i.e. task accuracy) using a paired-samples two-tailed t-test. We 
reasoned that participants who used graph-knowledge to estimate distances would show greater 
correlation with path distance than with Euclidean distance. This analysis was not performed for 
participants in the teleport maze, because these participants only had direct knowledge about the 
number of intervening rooms, not path length or Euclidean distance. 

 

Shortest path selection task 

To measure participants’ knowledge of the connectivity between rooms, we calculated the 
percentage of correct responses for each participant (i.e. the percentage of trials for which 
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participants correctly chose the shorter path). In the open and closed mazes, correct responses 
were based on the veridical path length. In the teleport maze, correct responses were based on 
the number of rooms connecting the starting and target objects (since no path length information 
was available in this condition). Chance performance was estimated for each maze by making 
1000 random answer selections for each question (average chance level accuracy - 0.49 for the 
open and closed maze conditions, 0.45 for the teleport maze condition). Accuracy was compared 
to chance using a one-sample one-tailed t-test across participants, with FDR-correction across 
conditions. Differences between conditions were tested using a one-way ANOVA with Tukey-
Kramer post-hoc tests.  

To test whether participants incorporated cognitive graph knowledge in their responses, 
we examined trials in the open and closed mazes for which there were two pathways of equal 
veridical length but different number of intervening rooms between the starting and target rooms. 
We calculated the fraction of these trials on which participants chose the route with the lower 
compared to the higher number of intervening rooms. This value was compared to the null 
hypothesis of no route preference (0.5) using a one-sample two-tailed t-test, with FDR-correction 
across mazes. In addition, we conducted a secondary analysis by considering only intervening 
rooms that served as decision points, disregarding rooms with only one entry and one exit point 
(since these rooms may have been treated as parts of the route instead of as distinct nodes). 

 

Path distance estimation task 

To measure participants’ knowledge of the length of environmental routes, task accuracy 
was computed for each participant by taking the correlation between the estimated distance on 
each trial (quantified in terms of travel time) and the veridical shortest path distance between 
objects (for the open and closed maze conditions’ participants) or the veridical minimal number 
of rooms connecting the starting and target objects (for the teleport maze condition participants, 
since inter-room transitions did not differ in length in this condition). Above-chance performance 
in each environmental condition was measured using a one-sample one-tailed t-test across 
participants in each condition against a zero baseline, with FDR-correction across conditions. 
Differences between conditions were tested using a one-way ANOVA with Tukey-Kramer post-
hoc tests. 

 

Free recall task 

The relation between recall order and objects’ spatial distance was measured by 
calculating the distance between each pair of consecutively-recalled objects, averaging these 
values for each participant, and comparing these values to chance-level distances (estimated 
using 1000 random permutations of object names) using a one-sample one-tailed t-test across 
participants in each condition, with FDR-correction across conditions. Differences between 
conditions were tested using a one-way ANOVA with Tukey-Kramer post-hoc tests. 
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Map localization task 

To test participants’ knowledge of the overall environmental configuration, task accuracy 
was assessed by taking each participant’s localization responses and using a gradient descent 
algorithm to translate, scale, mirror, and rotate these responses by multiples of 90 degrees until 
they best fit the true configuration. Accuracy was then determined by measuring the average 
distance between each object’s marked location and its true location. These values were 
compared to chance-level performance (estimated using the same process for 1000 random 
localizations of 9 items), using a one-sample one-tailed t-test across participants in each 
condition, with FDR-correction across conditions. Differences between conditions were tested 
using a one-way ANOVA with Tukey-Kramer post-hoc tests. 

We also tested whether participants might have represented the environment as a graph 
with equal distances between rooms. Since there is no 2-dimensional configuration with exact 
equidistance between rooms, we created an approximate model of an equidistant graph by taking 
the rooms’ connectivity structure and utilizing a spring-embedding algorithm using Cytoscape 
3.9.1 ((Kamada & Kawai, 1989; Shannon et al., 2003); Figure 3E). Subsequently, we assessed 
localization accuracy relative to this structure using the same methodology described above 
(involving rotating, translating, mirroring, and scaling the data to the configuration that best 
matched the model, followed by measuring the average distance between the marked locations 
and the corresponding locations in the model).  

 

Judgment of Relative Direction (JRD) task 

To test participants’ knowledge of the directions between environmental elements, task 
accuracy was computed as the mean angular distance between participants’ responses and the 
veridical object directions. These values were compared to chance-level performance (90 
degrees average deviation) using a one-sample one-tailed t-test across participants in each 
condition, with FDR-correction across conditions. The difference between the open and closed 
maze conditions was tested using a two-sample two-tailed t-test. 

 

Individual variability analysis 

To investigate individual variability in environmental learning, we used the map localization 
task results to assign participants to groups, because this task provides the most direct test of 
participants’ knowledge of environmental layout. Employing K-means clustering (K=2) on the 
performance data from the map localization task, we divided the 60 participants into two groups 
(participants with good and bad knowledge of  the veridical environmental structure). To confirm 
the distinctiveness of these groups, we computed the silhouette value of the clustering and 
compared it to the silhouette values obtained from 1000 iterations of randomly-generated data (in 
the same value range) divided into two groups using k-means clustering. The silhouette value of 
the original grouping exceeded that of 99% of the random groupings, demonstrating significant 
separation between the groups (p=0.01). Further validating this grouping, dividing the data to two 
clusters based on the median value yielded nearly identical results, with only two participants 
differing in their classification. The resulting groups of participants were subsequently named 
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“integrators” (32 participants) and “non-Integrators” (28 participants), following Weisberg & 
Newcombe 2018. Within the integrators group, 18 participants were in the open maze, 9 
participants were in the closed maze, and 5 participants in the teleport maze. Within the non-
Integrators group, 2 participants were in the open maze, 11 participants were in the closed maze, 
and 15 participants were in the teleport maze. To assess the difference in distribution of 
integrators and non-integrators between the groups, we used a Chi-square test. 

To investigate the effect of individual variability on task performance, we analyzed the 
accuracy of integrators and non-integrators in the Euclidean distance estimation task, shortest 
path selection task, path distance estimation task, and JRD, in each environment separately. 
Since there were few non-integrators in the open maze or integrators in the teleport maze, these 
two groups (open maze non-integrators and teleport maze integrators) were omitted from the 
analyses. Differences between the remaining four participant groups (open maze integrators, 
closed maze integrators, closed maze non-integrators and teleport maze non-integrators) were 
tested for each task using a one-way ANOVA with Tukey-Kramer post-hoc tests. The resulting p-
values were FDR-corrected across tasks.  

 

Bayesian analyses and post-hoc power analyses 

To further validate our statistical analyses, we complemented the traditional hypothesis 
testing with Bayes factor (BF10) calculations for all statistical comparisons. Bayesian analyses 
were conducted using the BayesFactor toolbox (Krekelberg, 2022). Effect strengths were 
interpreted following standard guidelines (BF10>10 – strong evidence, 10>BF10>3 – moderate 
evidence; (Van Doorn et al., 2021)).  

Additionally, we assessed the replicability of the observed effects by conducting post-hoc 
power analyses of each of the paper’s significant effects using G*Power 3.1 (Faul et al., 2009). 
The power analysis indicated that the majority of the study’s effects should be detected with 
sufficient power (β=80%) with sample sizes ranging from 4 to 18 participants per condition. 
Detailed information on Bayesian statistics, effect sizes, power analysis results, and other 
statistical values is provided in Table S1. 

 

Transparency and Openness 

We report how we determined our sample size, data exclusions (if any), manipulations, 
and measures in the study. This study was not preregistered. All data and analysis codes are 
publicly available at: https://osf.io/adcfk/. 

 

 

https://osf.io/adcfk/
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Results 
The structure of the environment affects the accuracy of spatial knowledge 

Each participant was familiarized with one of the three virtual environments through a 
multi-stage training procedure. Participants first learned to navigate between the subspaces 
(patios or rooms), as defined by their floor colors. Then they learned to navigate to objects located 
in “treasure chests” within each subspace. By the end of the training, participants were able to 
use their memory to navigate to all subspaces and objects without error, even in the absence of 
any floor colors or visible objects. Their routes to the targets were significantly shorter than a 
random walk (p<0.01 for all three environments; see Table S1 for full statistical results of all 
analyses), indicating that they encoded representations of the spatial organization of the 
environment and used these representations to guide their movements. 

Participants then performed a series of memory tasks to assess their spatial knowledge 
of the learned environment in detail. Three tasks were designed to test Euclidean knowledge 
(Euclidean distance estimation, map localization, and judgment of relative direction) and two were 
designed to test graph-based knowledge (path distance estimation, shortest path selection). All 
tasks were administered to all participants, with the exception the judgment of relative direction 
task (JRD), which was not administered to participants in the teleporter maze because directions 
between rooms are not defined in this environment.  

In all three environments, performance in all tasks was better than chance (all ps<0.01; 
Figure 2A-E, Table S1). However, we also observed consistent differences in performance 
between the environments: accuracy was highest in the open maze condition, intermediate in the 
closed maze condition, and lowest in the teleport maze condition. These differences between 
environments were confirmed by ANOVA for the Euclidean distance estimation, map localization, 
path distance estimation, and shortest path selection tasks (all Fs>18, all ps<0.0001; FDR-
corrected across tasks) and by t-test for the JRD task (t(1,37)=2.3, p=0.025). Tukey-Kramer post-
hoc tests found significant differences between the open and closed maze for the Euclidean 
distance estimation, map localization, path distance estimation, and shortest path selection tasks 
(all ps<0.05) and significant differences between the closed and teleport maze for the Euclidean 
distance estimation and shortest path selection tasks (p=0.0497, 0.006, respectively). Post-hoc 
tests of the closed vs. teleport maze difference fell short of significance for the map localization 
and path distance estimation tasks (p=0.11, 0.074, respectively). Bayesian analyses provided 
strong evidence (Bayes Factor>10) for pairwise differences between the open and closed maze 
in all tasks except JRD, where there was only weak evidence (BF10=2.5), and there was 
moderate or weak evidence for pairwise difference between the closed and teleport maze across 
the tasks (BF10 values=1.07-4.93). Notably, the same pattern of performance across 
environments was observed for the three tasks that assessed Euclidean knowledge (Euclidean 
distance estimation, map localization, JRD) and the two tasks that assessed graph-based 
knowledge (path distance estimation, shortest path selection). 

We also administered a free recall task on the object names. Previous work has shown 
that the order of free recall can be shaped by the spatial proximity of objects, such that closer 
items are more likely to be recalled in sequence (Hirtle & Jonides, 1985; Miller et al., 2013; Peer 
& Epstein, 2021). Consistent with this prior work, the order of object recall was related to the both 
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the Euclidean and path distance between objects in the open maze (Euclidean p=0.003; path 
p=0.005) and in the closed maze (Euclidean p=0.02; path p=0.02; all ps FDR-corrected across 
environments; Figure 2F). Bayesian evidence for these relationships was strong in the open maze 
(BF10=67, 49, respectively; Table S1) and moderate in the closed maze (BF10=7.41, 8.15, 
respectively). In the teleport maze, recall order was not related to either Euclidean or path distance 
(p=0.56, 0.12, respectively).  

Taken together, these results demonstrate that participants can acquire information about 
the spatial structure of different environments, even in environments like the teleport maze where 
spatial structure is defined by connectivity relationships alone. However, there is an ordering of 
spatial memory accuracy that relates to the richness of the location and direction cues. Accuracy 
is highest in the open maze, where participants can determine their location and heading directly 
through perception. Accuracy is intermediate in the closed maze, where participants can use 
perception to determine their local (within-room) location and heading, but can only determine 
their global (across-rooms) location and heading by keeping track of these quantities as they 
move from room to room. Accuracy is lowest in the teleport maze, where any inference about 
global location and heading must be made indirectly because there were no cues indicating these 
quantities as the participants teleported from room to room. Thus, the structure of the environment 
affects the quality of the spatial representations formed. 

 

 
Figure 2: Accuracy of spatial memory differs across environments. A-E) Performance in spatial 
memory tasks. In all environments and tasks, participants performed above chance level (dashed line), 



17 
 

indicating that they acquired information on the environment’s spatial layout. However, spatial memory 
accuracy differed across tasks: it was highest in the open maze condition, lower in the closed maze 
condition, and lowest in the teleport maze condition, indicating that the gradual removal of location and 
direction cues impaired spatial memory despite the similar layout and connectivity of all environments. F) 
Free recall of object names: objects’ recall order was related to inter-object spatial distances in the open 
and closed maze conditions, but not in the teleport maze condition. Grey dots represent individual 
participants’ data; colored dots indicate group means (green – open maze, red – closed maze, blue – 
teleport maze); error bars indicate standard error of the mean; asterisks represent significant above-chance 
performance; full lines represent significant differences between adjoining conditions. 

 

 

The structure of the environment affects the format of spatial knowledge 

We next investigated whether the structure of the environment affects not just the 
accuracy of learned spatial representations, but also their format. We were specifically interested 
in the distinction between map-like and graph-like representations. Some researchers have 
argued that spatial knowledge typically takes the form of a map-like Euclidean code (Gallistel, 
1990; O’Keefe & Nadel, 1978; Siegel & White, 1975), while others have argued that it typically 
takes the form of a graph consisting of nodes and edges (Kuipers, 1982; Warren, 2019). We 
previously suggested that Euclidean representations might be more common in open 
environments, whereas graph-like representation might be more common in closed environments 
(Peer et al., 2021). Here we tested this idea in four analyses. 

First, we examined route preferences during the learning task, focusing on trials in the 
open and closed mazes that had two possible routes toward the target, each with the same 
Euclidean path length but a different number of intervening rooms (Figure 3A). We reasoned that 
if participants relied on a purely Euclidean cognitive map, then Euclidean distance to goal should 
be the only consideration for route choice, and both routes should be selected with equal 
probability. If, however, participants relied on a graph-like representation, then they should prefer 
to take the path with fewer intervening rooms, because this involves travelling over fewer graph 
edges. Moreover, if graph-like representations are more common in closed environments, this 
bias would be stronger in the closed maze than in the open maze. Consistent with these 
predictions, participants in the closed maze preferred routes passing through a smaller number 
of rooms (p=0.001), while participants in the open-maze participants did not (p=0.17, FDR-
corrected across environments), and the difference in route preference between the mazes was 
significant (t(38)=2.11, p=0.04). Thus, these results found evidence for preferential use of graph-
like representations in closed environments, though we must caveat this by noting that Bayesian 
evidence for the open vs. closed maze difference was weak (BF10=1.7, Figure 3B, Table S1).  

Second, we tested for analogous effects in the shortest-path selection task. Once again, 
we focused on trials in which participants were asked to choose between two paths that had equal 
Euclidean length but different numbers of path segments. We found that closed-maze participants 
consistently selected routes with fewer intervening rooms, indicating the use of a graph-like 
representation (p=0.004, FDR-corrected across mazes). Open maze participants exhibited a 
similar but weaker tendency, which did not reach significance (p=0.07; Table S1). There was no 
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significant difference in the inclination to use graph knowledge between the two environments 
(p=0.22; Figure 3C, Table S1). Similar results were observed when path lengths were defined by 
number of intervening decision points (i.e. rooms with two possible exits) rather than number of 
intervening rooms (p=0.0002, 0.068, for the closed and open maze respectively; Table S1). Thus, 
these results provide evidence for the use of graph-like representations, but do not provide 
evidence for preferential use of graph-like representations in closed environments. 

Third, we examined distance estimates in the Euclidean distance estimation task. We 
reasoned that if participants utilized a graph-like code instead of (or in addition to) a map-like 
code, then their Euclidean distance estimates should be affected by the path distance between 
the two items on each trial, even though path distance is not what the task queries. To test this 
idea, we correlated participants’ estimated distances on each trial to both the veridical Euclidean 
distances and the veridical path distances. In the open maze, participants’ Euclidean distance 
estimates were equally correlated with both Euclidean and path distance (mean r=0.72,0.74, 
respectively, p=0.38 for the difference; Figure 3D, Table S1). In the closed maze, however, their 
Euclidean distance estimates were more highly correlated with path distance than Euclidean 
distance, suggesting the use of graph knowledge (r=0.46,0.42, respectively, p=0.009 for the 
difference). However, this higher correlation for path vs. Euclidean was not significantly greater in 
the closed maze compared to the open maze (p=0.09). Thus, this analysis found evidence for the 
use of graph-like representations in the closed environment, but did not find evidence for 
preferential use of graph codes in this environment. 

Finally, we examined participants’ responses in the map localization task. To test for 
preferential use of map-like vs. graph-like codes, we analyzed the data with reference to two 
ground truth models: 1) the actual Euclidean structure of the space and 2) a graph-like structure 
in which rooms are assumed to be approximately equidistant from each other (see Methods). The 
object and room locations reported by the open maze participants were more consistent with 
Euclidean structure than with equidistant graph structure (p=0.00005, FDR corrected across 
environments; Fig. 3E, Table S1), whereas responses in the closed maze and teleport maze were 
better fit by the equidistant graph model (p=0.04, 0.00004). Bayesian evidence supporting these 
preferences was strong in the open and teleport maze but weak in the closed maze 
(BF10=766,1706,1.6, respectively; Table S1). The difference between Euclidean vs. graph fit 
differed significantly between the open and closed maze and between the open and teleport maze 
(both ps<0.01), but not between the closed and teleport maze (p=0.11; one-way ANOVA with 
Tukey-Kramer post-hoc tests). These results suggest that participants the open maze constructed 
a representation closely resembling the Euclidean layout of the space, whereas participants in 
the closed and teleport maze formed mental representations resembling a graph with equal 
distances between locations (although see next section for analysis of individual variability of 
representations in the closed maze). 

In sum, our results suggest that participants’ spatial knowledge extends beyond a 
Euclidean map and incorporates graph-like elements. Moreover, two of our four analyses show 
evidence that participants are more likely to use a graph-like code in closed environments 
compared to open environments, both during navigation in the environment (learning task) and in 
post-navigation memory tasks. 
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Figure 3: Differential use of cognitive graph knowledge across the three environments. A) A 
schematic of a sample trial, where there were two pathways between the starting and target objects with 
equal path length but a different number of intervening rooms (graph length). If participants respond based 
on Euclidean knowledge alone, then both pathways should be selected with equal probability, but if 
participants respond based on a cognitive-graph based representation, they would choose the route with 
fewer intervening rooms because it has shorter graph length. B-C) In the learning task and shortest path 
selection task, closed-maze participants were biased toward selection of the route with the smaller number 
of intervening rooms, indicating use of graph knowledge, but open-maze participants were not. D) In the 
Euclidean distance estimation task, closed-maze participants made estimates that were more highly 
correlated with path distance than Euclidean distance, indicating a distortion of perceived Euclidean 
distances by graph knowledge. Open-maze participants did not show this effect. E) In the map localization 
task, we compared responses to two representational models – one reflecting the Euclidean structure of 
the environment, the other reflecting the graph structure under the assumption of equal distances between 
rooms. Reponses of open-maze participants were more consistent with the Euclidean structure of the 
environment, while responses of closed-maze and teleport-maze participants were more consistent with a 
cognitive graph representation. Euclidean– veridical Euclidean layout model; Graph – Equidistant graph 
model. Plot elements are the same as in Figure 2. 

 

The structure of the environment affects how spatial knowledge varies across individuals 

Finally, we turned to an examination of how spatial knowledge varied across individual 
participants. Previous work has examined individual differences in cognitive maps within a single 
environment (Ishikawa & Montello, 2006; Weisberg & Newcombe, 2018), and we wanted to 
understand how this variability might express itself across different types of environments. To 
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investigate this issue, we focused first on the map localization data, as this is the task that most 
directly assesses participants’ ability to form an accurate cognitive map of the environment.  

Inspection of the data (Fig 4A) revealed an interesting pattern of variability across the 
three mazes. In the open maze, most participants were able to localize the objects and rooms 
with high accuracy, but there were two participants who exhibited notably worse performance. In 
the teleport maze, the converse pattern was observed: most participants were unable to localize 
the items accurately, but there were participants with notably better performance. This suggests 
that some teleport maze participants were able to intuit an accurate cognitive map of the 
environment even in the absence any direct cues about the relative locations of the rooms. Finally, 
participants in the closed maze showed a wide range of performance, with some participants 
responding as accurately as the majority of the open maze participants, and some responding as 
inaccurately as the majority of the teleport maze participants (see Figure S2 for example 
responses from specific participants). 

The overall picture suggests that some participants can form an accurate cognitive map, 
as evidenced by their ability to localize items accurately in the map test, while others cannot, and 
that this is the case in all three environments but to different degrees. To further examine this 
idea, we divided participants into two groups using k-means clustering (clustering silhouette score 
= 0.88, p=0.01). Following the terminology used in Weisberg & Newcombe (Weisberg & 
Newcombe, 2018), we refer to these two groups as “integrators” (accurate localization) and “non-
integrators” (inaccurate localization). These groups were unequally distributed across the three 
mazes: in the open maze, most participants were integrators; in the closed maze, about half of 
the participants were integrators and half were non-integrators; in the teleport maze, most 
participants were non-integrators. The proportion of integrators to non-integrators differed 
significantly between the mazes (X2(2,n=60)=17.8, p<0.01, Chi-square test). These data support 
the idea that the propensity of a navigator to behave as an integrator or non-integrator may 
depend on the structure of the environment. 

We next examined the variability of individual performance in the other memory tasks. We 
were particularly interested in whether the distinction between integrators and non-integrators, 
derived from map localization performance, would be preserved across tasks. For the statistical 
analyses, we divided the participants into four groups based on their map localization 
performance: open maze integrators, closed maze integrators, closed maze non-integrators, and 
teleport maze non-integrators. We did not analyze open maze non-integrators and teleport maze 
integrators because there were only small numbers of participants in these groups. 

We found that the integrator vs. non-integrator distinction was preserved across all tasks. 
Performance differed across participant groups in the Euclidean Distance Estimation Task 
(F(3,49)=40.0, p<0.0001; Fig 4B), the path distance estimation task (F(3,49)=41.5, p<0.0001; Fig 
4D), and the shortest path selection task (F(3,49)=46.2, p<0.0001; Fig. 4E). Across these three 
tasks, performance of closed-maze integrators was significantly better than the performance of 
closed-maze non-integrators (post-hoc Tukey-Kramer, p<0.0001 in all tasks). In contrast, 
performance did not differ significantly between open-maze integrators and closed-maze 
integrators (p>0.91 in all tasks), nor did it differ significantly between closed-maze non-integrators 
and teleport-maze non-integrators (p>0.26 in all tasks; Table S1). In other words, integrators in 
the open and closed mazes performed similarly, and non-integrators in the closed and teleport 
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mazes performed similarly. A division between integrators and non-integrators was also observed 
in the three groups analyzed in the JRD task: performance differed between open-maze 
integrators, closed-maze integrators, and closed-maze non-integrators (F(2,34)=23.13, 
p<0.0001; Fig. 4C), and post-hoc pairwise comparison found a significant difference between 
closed-maze integrators and closed-maze non-integrators (p<0.0001), but not between open-
maze integrators and closed-maze integrators (p=0.87).  

Bayesian analyses found extremely strong evidence that the integrator and non-integrator 
groups exhibited different levels of performance in all tasks (e.g., BF10s>800 for integrator vs. 
non-integrator the closed maze; Table S1). However, there was only weak evidence for the null 
hypotheses that open-maze integrators and closed-maze integrators had the same performance 
(BF10s=0.40-0.51) and that closed-maze non-integrators and teleport-maze non-integrators had 
the same performance (BF10s=0.38-0.71). The latter results indicate that we cannot make strong 
claims that performance is driven entirely by integrator vs. non-integrator status—the structure of 
the environment may have an additional influence beyond its effect on the assignment of 
individuals to these groups. 

To explore the type of representation formed by integrators and non-integrators, we 
focused on the closed maze participants and examined their map localization responses. As in 
the previous section, we compared responses to the Euclidean structure of the space and an 
equidistant graph model, but this time looking at integrators and non-integrators separately. This 
analysis revealed that maps produced by integrators exhibited a greater resemblance to the 
Euclidean structure of the space (marginal effect, p=0.07), whereas maps produced by non-
integrators showed a greater resemblance to the equidistant graph model (p<0.0001), with the 
difference between the two groups being significant (p<0.0001; Figure 5, Table S1). These 
findings suggest that integrators tend to form Euclidean representations in the closed maze, akin 
to participants in the open maze, whereas non-integrators tend to form graph-like representations, 
similar to participants in the teleport maze.  

What drives the division of participants into integrators and non-integrators? Our findings 
suggest that the environment itself is a primary factor: most participants in the open maze are 
integrators, whereas most participants in the teleport maze are non-integrators. However, the fact 
that individual differences are observed in all three environments indicates that the effect of the 
environment is not absolute. To explore potential factors related to this within-environment 
individual variability, we examined its relation to participants’ baseline spatial abilities, including 
perspective-taking ability (PTT-A score) and self-rated navigational ability (SBSOD score), as well 
as their sex, by comparing these factors between integrators and non-integrators in the closed 
maze. We found that integrators had higher SBSOD and PTT-A scores than non-integrators 
(t(18)=2.22, 2.22, both ps=0.04), and that integrators were significantly more likely to be male 
(t(18)=2.48, p=0.04; two-tailed two-sample t-tests, FDR corrected across measures; Fig. 6).  

We then examined the correlation between these factors (SBSOD, PTT-A, sex) and 
performance in specific tasks within each maze, in this case collapsing over the integrator/non-
integrator distinction (Table S2). We did not observe any relationships in the open or teleport 
mazes, most likely because variability of performance in these mazes was not sufficient to 
observe significant effects. In the closed maze, male sex was significantly correlated with 
performance in the Euclidean distance estimation, path distance estimation, shortest path 



22 
 

selection, map localization, and JRD (all ps<0.05; FDR-corrected across tasks and environmental 
conditions). Correlations between participants’ PTT-A and SBSOD scores and their performance 
in the specific tasks were positive but did not reach significance after multiple correction over 
maze and task. Overall, our results suggest that within-environment variability in environmental 
learning is related to participants’ baseline navigation and perspective taking ability, as well as to 
their sex.  

In summary, our findings indicate that the environment plays a crucial role in dividing 
participants into integrators and non-integrators. Most participants perform well in open 
environments, and most perform poorly in cue-limited (teleport maze) environments. Variability 
between individuals becomes most pronounced in maze-like environments, which have limited 
visibility and require the internal tracking of location and direction. 

 

 
Figure 4: Individual variability manifests differently across the three environments. (A) Dot plot of 
map localization task performance, with k-means clustering into two groups. “Integrators” are participants 
above the horizontal line and “non-integrators” are participants below the horizontal line. The proportion of 
integrators varies across environments (almost all participants in the open maze, about half in the closed 
maze, and almost no participants in the teleport maze), suggesting that the ability to integrate is not a stable 
personality trait but instead depends on the environment being navigated. (B-E) Spatial memory task 
performance after dividing participants into “integrators” and “non-integrators” (excluding the small groups 
of open maze non-integrators and teleport maze integrators). Across tasks, integrators consistently 
performed better than non-integrators. Moreover, performance of open-maze and closed-maze integrators 
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was similar, as was performance of closed-maze and teleport-maze non-integrators. Plot elements are the 
same as in Figure 2. 

 

 
Figure 5: Integrators form Euclidean representations, whereas non-integrators form graph-like 
representations. The plot indicates the fit of the map localization responses of integrators and non-
integrators to two representational models (Euclidean or graph; see Figure 3E). Open-maze and closed-
maze integrators use a veridical Euclidean representation of the space, whereas closed-maze and teleport 
maze non-integratorsuse a graph-like representation. Plot elements are the same as in Figure 2. Lines 
indicate within-group significant differences, line with asterisk indicates between-group significant 
difference. 
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Figure 6: Sex, SBSOD and PTT-A differences between integrators and non-integrators in the closed 
maze. Plot elements are the same as in Figure 2. A) Sex, B) SBSOD = Santa Barbara Sense of Direction, 
C) PTT-A = perspective-taking task for adults. 
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Discussion 
The aim of this study was to understand how the physical structure of the navigable 

environment affects the accuracy and format of cognitive maps. Our analyses yielded three main 
findings. First, the accuracy of spatial knowledge was affected by the structure of the environment. 
Despite the fact that the open maze, closed maze, and teleport maze all had the same number of 
rooms and the same connectivity structure, spatial memory differed substantially between these 
conditions, with greater accuracy in environments with greater number of orienting cues 
(open>closed>teleport). Second, the format of spatial knowledge was also affected by the 
structure of the environment. Although we found evidence for both map-like and graph-like 
representations, participants used graph-like codes more often in the closed and teleport mazes 
compared to the open maze. Third, inter-individual variability in spatial knowledge was affected 
by the structure of the environment. Variability was relatively low in the open maze, where most 
participants were classified as integrators, and it was also low in the teleport maze, where most 
participant were classified as non-integrators. In contrast, variability was higher in the closed 
maze, where participants fell about evenly into these two groups. Notably, we found that non-
integrators in the closed maze represented the maze as resembling an equidistant graph, while 
the representations of integrators were more similar the actual Euclidean distances between 
locations. Taken together, these results emphasize the strong effect that environmental structure 
has on spatial knowledge, and indicate that past and future studies of spatial representations 
should be carefully interpreted with respect to the specific type of environment used in each study. 
Below we discuss each of our main findings in more detail. 

The first question we asked was whether the structure of the environment affects the 
accuracy of spatial knowledge. We found strong evidence that it does. There was a consistent 
ordering of performance across the environments: accuracy in all of our spatial memory tasks 
was highest for participants in the open maze, intermediate for participants in the closed maze, 
and lowest for participants in the teleport maze. This was despite the fact that all three 
environments had the exact same number of rooms, room geometry, and connectivity structure.  

What could be the cause of this ordering? By design, the three environments differed in 
the cues available for determining heading and location in global Euclidean space. In the open 
maze, the entire environment was always visible, including the boundary of the courtyard and the 
distal landmarks. Thus, it was possible for participants to determine their global location and 
heading directly through perception. In the closed maze, on the other hand, participants could not 
see beyond the walls that bounded the local room or corridor. Thus, they could determine their 
local (within-room) location and heading through direct perception, but their global position and 
heading could only be ascertained by using an active memory process to keep track of these 
quantities as they moved from room to room. In the teleport maze, even this active tracking 
process was not possible, because there were no distance cues when participants were 
teleported from room to room, and their heading when placed in the new room was randomly 
chosen. Thus, the key factor that likely accounts for the difference in performance across the 
three environments is the ability of the participants to maintain a sense of global location and 
direction in Euclidean space during learning. This conclusion is consistent with a large literature 
that suggests that the ability to path integrate—to keep track of one’s position and heading during 
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exploration—is crucial for building up a Euclidean cognitive map (Etienne & Jeffery, 2004; 
McNaughton et al., 1996, 2006).  

 The second question that we asked was whether the format of the environment affects the 
format of the cognitive map. The question of format has been the subject of considerable debate. 
Some theories posit that spatial knowledge consists of a map of locations represented within a 
global Euclidean coordinate system (Gallistel, 1990; O’Keefe & Nadel, 1978; Siegel & White, 
1975), while others theories posit that it consists of a graph of routes connecting different 
locations, with no integration of the locations into a single global reference frame (Kuipers, 1982; 
Meilinger, 2008; Warren, 2019). In a previous review, we argued that map-like and graph-like 
representations might simultaneously exist in the same individuals and be differentially employed 
in different environments (Peer et al., 2021). Our findings provide evidence in support of these 
ideas. 

Consideration of results across the three environments suggests that people formed both 
Euclidean and graph-like representations. Supporting the use of Euclidean codes is the fact that 
participants were able to perform tasks that were designed to tap Euclidean knowledge (map 
localization, Euclidean distance estimation, JRD). Moreover—as discussed in the previous 
section—their ability to do so varied across environments depending on the presence or absence 
of cues that allowed them to determine their global Euclidean position and heading. Of particular 
note, the difference in performance between the open and closed maze would not be found if only 
graph-like representations were formed, because such representations only encode local spatial 
features (node identity, angle of links at a node) that are equally present in both the open and 
closed maze (Ericson & Warren, 2020; Warren, 2019). However, we also found evidence for 
graph-like representations. Participants’ navigational choices during learning and their responses 
in the shortest path task were influenced by graph knowledge: when faced with a decision 
between two paths of equal Euclidean length in the open and closed mazes, they preferred the 
path with fewer graph segments. Moreover, their Euclidean distance estimates in the closed maze 
were more highly correlated to path distances than to Euclidean distances, suggesting that a 
graph-like representation was accessed during this task. Finally, the mere fact that participants 
were able to navigate accurately in the teleport maze where only connectivity information was 
available suggests that spatial representations can, in some circumstances, be predominantly 
graph-based. Thus, neither Euclidean maps nor cognitive graphs can explain our results on their 
own; both are needed. 

We also found some support for the idea that the use of graph knowledge would vary 
across environments depending on their structure. When navigating through the environment in 
the learning phase, participants in the closed maze exhibited a stronger preference for paths with 
fewer graph segments (when presented with alternatives of equal length) compared to 
participants in the open maze. Furthermore, in the map localization task, participants in the 
teleport maze, as well as non-integrators in the closed maze, demonstrated memory of object 
locations that aligned more closely with an equidistant graph-like representation than with the 
Euclidean layout of the environment. In contrast, participants in the open maze, as well as 
integrators in the closed maze, exhibited memory that more closely resembled the Euclidean 
layout of the environment. These findings support our previous suggestion that the challenge of 
integrating subspaces into a global Euclidean representation within a closed environment may 
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lead to greater reliance on environmental topology, resulting in the formation of a graph-like 
representation (Peer et al., 2021). . 

The final question that we asked was how individual variability would manifest across the 
three environments. Previous reports have demonstrated marked differences between people in 
their ability to integrate subparts of the environment to form a global cognitive map (e.g. (Ishikawa 
& Montello, 2006; Weisberg et al., 2014; Weisberg & Newcombe, 2018)). For example, in an 
environment consisting of constrained routes, people can be separated into three groups: 
integrators, who can accurately point to locations in separately-learned parts of the environment; 
non-integrators, who can point to locations in the same part of the environment but cannot point 
across parts; and imprecise navigators, who cannot accurately point to any location (Ishikawa & 
Montello, 2006; Weisberg et al., 2014; Weisberg & Newcombe, 2018). These differences have 
been shown to relate both to general cognitive abilities like mental rotation and perspective taking 
(Weisberg et al., 2014), as well as to the type of environment people grew up in (e.g. the layout 
of streets in people’s home town (Barhorst-Cates et al., 2021; Coutrot et al., 2022)). However, 
these studies all used a single environment, leaving open the question of whether the observed 
individual differences are stable character traits, or—alternatively—tendencies that might 
manifest differently in the same individual depending on environmental context. 

Here we found that there was a strong interaction between individuals’ cognitive mapping 
ability and the structure of the environment: in the open maze most participants were integrators, 
in the teleport maze most participants were non-integrators, and in the closed maze participants 
fell about equally into the two groups. But there were some notable exceptions: some participants 
performed poorly in the open maze despite the abundance of spatial cues, and some participants 
performed well in the teleport maze (even in the Euclidean tasks), despite a paucity of cues. 
These results suggest that cognitive mapping ability manifests differently across environments in 
most people, but there are some individuals on the extreme ends of the spectrum who show a 
greater degree of stability in their performance. Additionally, our results provide evidence that 
non-integrators, who face difficulties in estimating Euclidean distances and relations, are more 
likely than integrators to represent the environment in a graph-like format. 

Previous studies of individual differences in cognitive mapping have used environments 
that allowed continuous tracking of location and heading, but without full visibility to other parts of 
the environment (Ishikawa & Montello, 2006; Weisberg & Newcombe, 2018). The variability 
observed in these studies might be less robust in more open environments, or in unusually 
restricted environments like our teleport maze. Furthermore, the ability to mentally track location 
and heading might depend on perspective taking ability, which we found to be correlated to the 
individual differences in our task, in line with previous studies (Allen et al., 1996; Fields & Shelton, 
2006; Kozhevnikov et al., 2006; Schinazi et al., 2013). The interaction we observed between 
individual variability and environmental features is in line with a recent study which found that the 
existence of orienting landmarks interacts with individual variability in navigation, and that this 
variability is correlated to individuals’ sex, mental rotation ability and perspective taking ability 
(Cherep et al., 2023). Overall, this set of findings has two major implications: first, past (and future) 
studies of variability in navigational ability should be carefully interpreted with respect to the 
specific environment being explored; and second, specific environmental features can reduce the 
variability between people and allow some “bad navigators” to navigate efficiently and integrate 
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between different environmental subparts, suggesting implications for real-life environmental 
design. 

 In conclusion, we found that specific features of each environment affect the accuracy and 
format of the mental representations people form of these environments. We further found that 
individual variability in cognitive map formation and use of graph knowledge are not constant but 
instead depend on the environment being learned. These findings suggest that care should be 
taken to consider the specific environment’s features when interpreting the spatial navigation 
literature, and that environments and navigational aids can be designed to facilitate wayfinding 
even for people who would otherwise be bad navigators.  

 

Constraints on Generality 
 Our study has several limitations. First, we used environments that differed from each 
other along more than one feature (e.g. the open maze differed from the closed maze both in 
visibility across the environment and in the existence of distal landmarks). Further studies might 
attempt to disentangle the effect of each of these features on the resulting spatial representations, 
and test how the observed effects generalize to other environments. Second, our study did not 
investigate within-subject effects – although our individual difference analyses suggest that some 
individuals would perform differently in different environments, we do not have direct evidence 
that this is the case. Third, the study population was predominantly young adults, many of whom 
were university students, and participants were educated members of western societies who are 
familiar with built urban environments (e.g. cities with rectilinear streets, buildings with corridors 
and rooms). Further studies are needed to confirm the generality of the findings for other age 
groups and population sectors, and for human populations whose primary experience is with 
natural environments. Fourth, there are several important dimensions of environmental 
organization that we did not examine, such as division of the environment into segments that may 
be hierarchically organized (Hirtle & Jonides, 1985; McNamara et al., 1989). It is possible that our 
participants formed such representations in the present environments, but in an idiosyncratic 
manner that varied across individuals, thus making them difficult to test. Finally, some features of 
our environments (e.g. teleportation in the teleport maze, and virtual desktop navigation) are not 
realistic; future studies may study how these effects are manifested in real-life environments. 
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